منتدىمنتدى مزاد بيع وشراءسوق البنك التنقل السريع بين المنتدتياتاختصر وقتك
بوابة نوكيا   بوابة نوكيا > المنتديات الاخرى - Misc Section > منتدى المواضيع المحذوفه(نرجوا مراجعة شروط الحذف الجديدة في الوصف)
تابعنا على الفيس بوك تابعنا على تويتراضفنا لقائمة ال RSS

بوابة نوكيا


معادلات الدرجة الثانية في متغير واحد




ساهم بنشر الصفحة
رد
 
أدوات الموضوع






معادلات الدرجة الثانية في متغير واحد








معادلة الدرجة الثانية (المعادلة التربيعية) هي معادلة يكون المتغير فيها مربعاً. فمثلاً س² - 8س = -16 معادلة من الدرجة الثانية في متغير واحد، نستطيع دائماً أن نضع معادلة الدرجة الثانية على الصورة:

أ س² + ب س + جـ = صفر

وتسمى القيم أ ،ب، جـ المعاملات وهي قيم ثابتة معلومة و س متغيرًا مجهولاً، وأبسط صورة لهذه المعادلة هي المعادلة التي يكون فيها أ = 1 وب =صفر. فمثلاً إذا كان أ=1، ب=صفر وجـ =-36 فإن المعادلة تأخذ الصورة س² -36 = صفر. أي أن س² = 36 ومجموعة الحل هي ( -6، 6 ).

أما إذا كان ب لا يساوي صفرًا، فإن هناك ثلاث طرق لحل معادلة الدرجة الثانية.

الطريقة الأولى هي تحليل المعادلة بعد وضعها على الصورة

أ س²+ ب س + جـ = صفر. فمثلاً لحل س² + 8س + 15 = صفر، نحلل الطرف الأيمن لهذه المعادلة:


س² + 8س +15=(س + 3) (س + 5). ومن ثم فإن (س+3) (س+5) =صفر. لاحظ أنه إذا كان حاصل ضرب عددين يساوي صفرًا، فإنه إما أن يكون الأول صفراً أو الثاني صفرًا. وإذا كان س+5=صفر فإن س=-5 وبالمثل إذا كان س + 3 = صفر فإن س = -3. إذن مجموعة حل المعادلة س² + 8 س+15=صفر هي {5-، 3-}.

الطريقة الثانية لحل المعادلة تعرف بطريقة إكمال المربع. تسمى الصيغة أ²+2أ ب+ب² بالمربع الكامل لأننا نستطيع كتابتها على الصورة ( أ + ب)².


نستطيع دائماً أن نضع أية معادلة من الدرجة الثانية مثل س² + 8 س + 15 = صفر بحيـث يكـون الطــرف الأيمن مربعاً كامـلاً. ولرؤية ذلك نعيـد كتابة المعادلـة س²+ 8 س + 15 = صفر لتصبح س² + 8س= -15. نعلم أن س² + 8 س +16 مربع كامل لأنـنا نستطيـع أن نكتبـه على الصـورة (س + 4)². إذن نضيف 16 لطرفي المعادلة س² + 8 س = -15. ولنحصل على س² + 8س + 16 = -15 + 16. بالتحليل نحصل على (س + 4)² =1. ويسمى أحد العاملين المتساويين الجذر التربيعي . انظر: الجذر التربيعي. وفي المعادلـة (س + 4)² = 1 نجــد أن س + 4 هو الجذر التربيعي للعدد 1، ولكن الجذر التربيعي للعدد 1 هو العدد 1 أو العدد - 1. إذن س + 4 = 1 أو س + 4 = - 1، أي س = - 3 أو س = - 5. وبالتالي فإن مجموعة الحل للمعادلة س² + 8 س + 15 = صفر هي {5-، 3-}.

أما الطريقة الثالثة لحل المعادلة من الدرجة الثانية في متغير واحد فتتمُّ باستخدام قانون في الرياضيات هو:

س = ( - ب + أو - جذر(ب^2 - 4 أ ج ) ) / 2 أ

حيث نحصل على المعاملات أ، ب، جـ من المعادلة من الدرجة الثانية التي تكون على الصورة أ س² + ب س + جـ = صفر. و بتعويض هذه القيم في المعادلة نستطيع أن نجد قيم س. الرمز + في القانون يعني اختيار الإشارة الموجبة مرة والسالبة مرة أخرى. وهذا يعني أننا نحصل دائمًا على جذرين للمعادلة .











شكراَ لكـ ـ ـ

الله يعطيكـ الفـ عاآفيه

دائماآ تطل علينا بأروع مالديك

الله لا يحرمناآ من روعه طرحك

تسلم اناملك
على الطرح الرائع

تحياتى وتقديرى

تسلم أناملك

على الطرح الراااائع

الله يعطيك العافيه